Tensor supermultiplets and toric quaternion - Kähler geometry †

نویسنده

  • Frank Saueressig
چکیده

We review the relation between 4n-dimensional quaternion-Kähler metrics with n + 1 abelian isometries and superconformal theories of n + 1 tensor supermultiplets. As an application we construct the class of eight-dimensional quaternion-Kähler metrics with three abelian isometries in terms of a single function obeying a set of linear second-order partial differential equations. Talk given by F.S. at the RTN ForcesUniverse Network Workshop, Napoli, October 9th 13th, 2006.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off - shell N = 2 tensor supermultiplets

A multiplet calculus is presented for an arbitrary number n of N = 2 tensor supermultiplets. For rigid supersymmetry the known couplings are reproduced. In the superconformal case the target spaces parametrized by the scalar fields are cones over (3n − 1)-dimensional spaces encoded in homogeneous SU(2) invariant potentials, subject to certain constraints. The coupling to conformal supergravity ...

متن کامل

Hypermultiplets, Hyperkähler Cones and Quaternion-Kähler Geometry

We study hyperkähler cones and their corresponding quaternion-Kähler spaces. We present a classification of 4(n − 1)-dimensional quaternionKähler spaces with n abelian quaternionic isometries, based on dualizing superconformal tensor multiplets. These manifolds characterize the geometry of the hypermultiplet sector of perturbative moduli spaces of type-II strings compactified on a Calabi-Yau ma...

متن کامل

Toric Self-dual Einstein Metrics as Quotients

We use the quaternion Kähler reduction technique to study old and new selfdual Einstein metrics of negative scalar curvature with at least a two-dimensional isometry group, and relate the quotient construction to the hyperbolic eigenfunction Ansatz. We focus in particular on the (semi-)quaternion Kähler quotients of (semi-)quaternion Kähler hyperboloids, analysing the completeness and topology,...

متن کامل

Dirac-kähler Equation 1

Tensor, matrix and quaternion formulations of Dirac-Kähler equation for massive and massless fields are considered. The equation matrices obtained are simple linear combinations of matrix elements in the 16-dimensional space. The projection matrix-dyads defining all the 16 independent equation solutions are found. A method of computing the traces of 16-dimensional Petiau-Duffin-Kemmer matrix pr...

متن کامل

Kähler-sasaki Geometry of Toric Symplectic Cones in Action-angle Coordinates

In the same way that a contact manifold determines and is determined by a symplectic cone, a Sasaki manifold determines and is determined by a suitable Kähler cone. KählerSasaki geometry is the geometry of these cones. This paper presents a symplectic action-angle coordinates approach to toric Kähler geometry and how it was recently generalized, by Burns-Guillemin-Lerman and Martelli-Sparks-Yau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007